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IOT or Data Deluge?

In-situ stream processing & fusion + visual intelligence is a must! 

- In a few mW power envelope!!

Highly parallel workloads!

[Awaiba+Fraunhofer11]

4mW

CV is the energy bottleneck



How efficient?
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[RuchIBM11]

1012ops/J

↓

1pJ/op

↓

1GOPS/mW



The challenge of 

Energy Proportionality
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From KOPS (103) to EOPS (1018)!

log(mW)

1GOPS/mW

log(GOPS)

0,003GOPS/mW – 30KW

0,04GOPS/mW



A Very Short Review on CMOS power 
and power minimization



Summary of Power Dissipation 

Sources

 a – switching activity

 CL – load capacitance

 CCS – short-circuit capacitance

 Vswing – voltage swing

 f – frequency

    DDLeakDCDDswingCSL VIIfVVCCP a~

 IDC – static current

 Ileak – leakage current

powerstaticrate
operation

energy
P 



The Traditional Design Philosophy

 Maximum performance is primary goal
 Minimum delay at circuit level

 Architecture implements the required function  

with target throughput, latency

 Performance achieved through optimum sizing, 

logic mapping, architectural transformations.

 Supplies, thresholds set to achieve maximum 

performance, subject to reliability constraints



The New Design Philosophy

 Maximum performance (in terms of propagation delay) is 

too power-hungry, and/or not even practically achievable

 Many (if not most) applications either can tolerate larger 

latency, or can live with lower than maximum clock-speeds

 Excess performance (as offered by technology) to be used 

for energy/power reduction

Trading off speed for power



In energy-constrained world, design is trade-off process

♦ Minimize energy for a given performance requirement

♦ Maximize performance for given energy budget

Delay

Unoptimized 

design

DmaxDmin

Energy

Emin

Emax

Exploring the Energy-Delay Space

Pareto-optimal

designs

[Ref: D. Markovic, JSSC’04]
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Reducing power @ all design levels

 Algoritmic level

 Compiler level

 Architecture level

 Organization level

 Circuit level

 Silicon level

 Important concepts:

 Lower Vdd and freq. (even if errors occur) / 

dynamically adapt Vdd and freq.

 Reduce circuit

 Exploit locality

 Reduce switching activity, glitches, etc.
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Algoritmic level

The best indicator for energy is …..

…. the number of cycles

Try alternative algorithms with lower complexity

 E.g. quick-sort, O(n log n)  bubble-sort, O (n2)

 … but be aware of the 'constant' : O(n log n)  c*(n log n)

Heuristic approach

 Go for a good solution, not the best !!

Biggest gains at this level !!
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Compiler level

 Source-to-Source transformations

 loop trafo's to improve locality

 Strength reduction

 E.g. replace Const * A with Add's and Shift's

 Replace Floating point with Fixed point

 Reduce register pressure / number of accesses to register file

 Use software bypassing

 Scenarios: current workloads are highly dynamic

 Determine and predict execution modes 

 Group execution modes into scenarios

 Perform special optimizations per scenario

 DFVS: Dynamic Voltage and Frequency Scaling

 More advanced loop optimizations

 Reorder instructions to reduce bit-transistions
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Architecture level

Going parallel

Going heterogeneous 

 tune your architecture, exploit SFUs (special function 

units)

 trade-off between flexibility / programmability / genericity 

and efficiency

Add local memories

 prefer scratchpad i.s.o. cache

Cluster FUs and register files (see next slide)

Reduce bit-width

 sub-word parallelism (SIMD)
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Organization (micro-arch.) level

Enabling Vdd reduction

 Pipelining 

 cheap way of parallelism

 Enabling lower freq.  lower Vdd

 Note 1: don't pipeline if you don't need the performance

 Note 2: don't exaggerate (like the 31-stage Pentium 4)

Reduce register traffic

 avoid unnecessary reads and write

 make bypass registers visible
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Circuit level

 Clock gating

 Power gating

 Multiple Vdd modes

 Reduce glitches: balancing digital path's

 Exploit Zeros

 Special SRAM cells

 normal SRAM can not scale below Vdd = 0.7 - 0.8 Volt

 Razor method; replay

 Allow errors and add redundancy to architectural invisible 
structures

 branch predictor

 caches

 .. and many more ..



ASCI Springschool 2012 Henk Corporaal (16)

Silicon level

 Higher Vt (V_threshold)

 Back Biasing control
 see thesis Maurice Meijer (2011)

 SOI (Silicon on Insulator)
 silicon junction is above an electr. insulator 

(silicon dioxide)

 lowers parasitic device capacitance

 Better transistors: Finfet
 multi-gate

 reduce leakage (off-state curent)

 .. and many more



Two Ideas to Remember
…with their caveats



Go Simple+Parallel
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Lower Voltage Supply
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…but be careful with Leakage and its variability!



Introducing PULP



NTC Multicore?

1GOPS/mW

10x @10MOPS
Leakage!

High Vdd

90nm LP-CMOS
2010 - With EPFL (Atienza, Burg)



A pJ/OP Parallel ULP 

Computing Platform

 pJ/OP is traditionally* the target of ASIC + uCntr

Scalable: [KOPS,TOPS], 32bit architecture

Flexible: OpenMP, OpenVX

Open: Software & HW

22Departement Informationstechnologie und Elektrotechnik

*1.57TOPS/W: Kim et al., “A 1.22TOPS and 1.52mW/MHz Augmented Reality Multi-core Processor 

with Neural Network NoC for HMD Applications”, ISSCC 2014



Making PULP
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Data
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OpenRISC

Core  #1

Instruction

Memory

Start with an simple+efficient processor (~1IPC)
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Parallel processors for performance @ NT

Making PULP
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TCDM Logarithmic Interconnect
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Making PULP



TCDM Logarithmic Interconnect
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Multiple clusters (f,Vdd,Vbb) form a PULP system

Making PULP



PULP Cluster

Design choices

 I$  high code locality & simple architecture

 No D$  low locality & high complexity: Bpmm2
D$/Bpmm2

DTCDM<0,4 

 Sharing L1  less copies, easy work-balancing, low Tclk overhead in NT

 Multibank  smaller energy per access, “almost” multiported



OpenRisc Optimization

 Superpipelining harmful for energy efficiency
 Focused speed optimization on the critical path dominated by MEM

 Low pipeline depth  high IPC with simple microarchitecture

(a) LD/ST, (b) MUL (c) BR

50% less energy per operation on average, 5% more area



Logarithmic Interconnect
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Routing 

Tree

Arbitration 

Tree

Processors

Memory 

Banks

N+1N N+2 N+3 N+4 N+5 N+6 N+7
N+8

World-level bank interleaving «emulates» multiported mem

Ultra-low latency  short wires + 1 clock cycle latency



Low latency 

programming Interface
 Each command queue is dedicated to 

a core of the cluster: arbitration is 

made in hardware

 No need to reserve (lock/unlock) 

the programming channel

 COREs program DMA through register 

mapped on the DEMUX

 The registers belongs to aliases, 

no need for the processors to 

calculate (per-core) offsets

 A programming sequence requires
1. check a free command queue

2. write address of buffer in TCDM

3. write address of buffer in L2 memory

4. Trigger data transfer

5. Synchronization

EXT ADDR

TCDM ADDR

CMD

TCDM ADDR

EXT ADDR

CMD

BUSYBUSY

Programming Latency: ~10 CLOCK CYCLES!!!



DMA Architecture Overview
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 CTRL UNIT:
 Arbitration – forwarding 

and synchonization of 
incoming requests

 TRANSFER UNIT:
 FIFO Buffers tor TX and 

RX channnels

 TCDM UNIT:
 Bridge to TCDM protocol –

4 channels (2 RD and 2 
WR) 32 bit each

 EXT UNIT:
 Bridge to AXI, 64 bit

Key idea: only channel packets buffered internally – no DMA transfers!



Cluster DMA

Maximum BW 

for realistic 

applications

BF = 2

Typical config



Sharing fucntional units

(instruction set extensions)

Private FPU
Private FPU

-1
4

0
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0

0
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Results normalized to 

private FPU cfg

Results normalized to 

private FPU cfg

-2
0

0
%

-3
0

0
%

SHARING FPUS

 Floapint point units are area expensive, leakage hungry components

 Typical FPU density in application is no more than 20%

 FPUs typically feature latencies of several clock cycles



Scaling up

 32 bit architecture

 4 GB of memory

 Clusters in  Vdd, CLK 

domains

 L2 (2D & 3D) ready

 Host VM IF for  

Heterogeneous 

Computing

17.07.2014 36
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Programmability: OpenMP

while(1)
{

#pragma omp parallel num_threads(4)
{

#pragma sections
{

#pragma section
{     

#pragma omp parallel num_threads(16)
ColorScaleConv();

}
#pragma section
{     

#pragma omp parallel num_threads(16)
cvThreshold();

}
#pragma section
{    

#pragma omp parallel num_threads(16)
cvMoments();

}
#pragma section
{

#pragma omp parallel num_threads(16)
cvAdd();

}               
}

}
}

A.

C
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D

EH
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EG
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EF

D

EH

B.

C.

D.

void ColorScaleConv()
{

for(i = 0; i < FRAME_SIZE; i++)
{

[ALGORITH]
}

}

#pragma omp for

A powerful abstraction for specifying
structured parallelism

And very suitable for NUMA 
(cluster-based) systems

+OpenVX domain specific language

LLVM + OpenCL



Programming:  OpenVX

• C-based standard API for vision kernel

 Defines a set of standard kernels

 Enables hardware vendors to implement

accelerated imaging and vision algorithms

• Focus on enabling real-time vision 

 On mobile and embedded systems

• Graph execution model

 Each node can be implemented in software or 

accelerated hardware

 Data transfer between nodes may be optimized

Open source 
sample 

implementation?

Hardware vendor 
implementations

OpenCV 
open 

source 
library

Other higher-
level

CV libraries

Application

OpenVX
Node

OpenVX
Node

OpenVX
Node

OpenVX
Node



Vanilla OVX Runtime

HOST DEVICE L3 MEM

Kernel 1

Kernel 2

Leverages OpenCL runtime with OVX nodes treated as OCL kernels

Host synchronization between

successive kernels is imposed

Intermediate results stored in L3 mem 

each kernel boundary implies two 

accesses to all image data (write + read)



Localized Execution

 TCDM is partitioned into 3 buffers (B0, B1, B2)

 Output tile size is 160x120

 Sobel3x3 requires image overlapping (1 pixel for each direction), and so the tile size 

is 162x122

 ColorConvert does not require tile overlapping, but must provide a 162x122 result tile 

for the next stage → tile size propagation

 Smaller image sub-regions (tiles) totally reside in TCDM

 All kernels are computed at tile level, no more at image level → 
intermediate results are also allocated in TCDM



Localized Execution

 TCDM is partitioned into 3 buffers (B0, B1, B2)

 Output tile size is 160x120

 Sobel3x3 requires image overlapping (1 pixel for each direction), and so the tile size 

is 162x122

 ColorConvert does not require tile overlapping, but must provide a 162x122 result tile 

for the next stage → tile size propagation

 Smaller image sub-regions (tiles) totally reside in TCDM

 All kernels are computed at tile level, no more at image level → 
intermediate results are also allocated in TCDM



Localized Execution Results

• Framework prototype
 OpenVX support

 A limited subset of kernel has been implemented

 Polynomial time (i.e. fast) heuristics suitable for just-in-time execution

Cluster PE Efficiency



And what about Technology?



Near threshold FDSOI technology

44

Body bias: Highly effective knob for leakage control!
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Near threshold FDSOI technology

PULP V1



PULP V1: Doing nothing well

(with RBB)

Peripheral 

island

Ext island

Instruction Bus 

Island
Core 0 : N-1 Islands
 Each processor can be 

separately RBBed 

depending on the 

application workload

 Handled at software level 

through nested creation / 

destruction of threads
TCDM 0: M-1 Islands
 Each TCDM bank can be separately switched off depending on the application’s memory footprint

 Requires reconfiguration of TCDM interconnect addressing scheme

 Requires re-allocation of stack and program data after each reconfiguration

TCDM 

Interconnect 

Island

State-Retentive + Low Leakage + Fast transitions

More than 50% of power into memories… this is the next focus area!

0.2mm2

0.4-1.3V

28nm FDSOI



Introducing PULP V2



Board/Application-ready chip

 Implementation of a master 

and a slave peripheral

 Standard peripheral (e.g. SPI)

 Integration with FPGAs or 

standard low power external 

memories

 PULP as multi-core 

accelerator for micro-

controller host 

 STM32 host core

 PULP muti-core accelerator

 Daisy chain of PULP chips

 Pipeline of parallel processing 

units

 Each core perfrorms a stage of 

computation and forword 

temporary data to another stage

48

Standalone mode is also supported!



Clock generator: FLL 

 All-digital clock generation based on a Frequency Lock Loop (FLL)

 From 2GHz down to 15KHz (through clock division)

 Frequency step 10MHz (at lowest division factor)

 Small area 3300µm² (50 times smaller than classic PLL)

 Suited to fine-grain GALS architectures

 Frequency reprograming in less than 180ns

 No frequency overshoot

 15ps jitter

Controller
Target 

frequency

DCO

DAC
+
- VCO

Frequency counter

Clock divider

Clk_ref

Clk_out

Division factor

N

S. Lesecq, D. Puschini, E. Beigne, P. Vivet, and Y. Akgul, “Low-Cost and Robust Control of a DFLL for Multi-Processor System-on-Chip,”

IFAC Proceedings Volumes, vol. 18, pp. 1940–1945, 2011
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Near threshold FDSOI technology

PULP V1

PULP V2

Low-leakage vs. Low voltage (0.3V)  reactive or proactive?



ULP Latch-based SCM

 Based exclusively on standard cells

 Voltage range identical to the core
 Only static logic

 Layout based on guided P&R
 Close to 100% density

51

64 words x 64 bit

162 x 85 = 

13.7k um2

Decoders

Storage 

Array + 

output mux
Macro Size:

128 x 32 (4 kb)

86μm x 160μm

Input/Output Delay:

0.3ns/0.7ns @ss0.9V125°
2ns/3.3ns @tt0.3V25°(FBB)

SCMs



Comparison to 64x64 SRAM
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SCM Integration into PULP2
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16 banks of 

128x32 bit SCM

(8 kbyte)

2 banks of 

128x32 bit SCM

(2 kbyte)

Instruction 

cache per core

8 banks of 

512x32 bit SRAM

(16 kbyte)

PULP V2 is taping out this Week, PULP V3 is on the drawing board…



Bank 1 Bank x

Reconfigurable address mapping

 Support for different address 

mappings:
 Interleaved: horizontal shutdown and 

reduces conflicts in shared segments

 Non-interleaved mapping: private 
memory avoids conflicts

 Basic MMU 
 Coexistence of both shared and 

private memory segments with 
different address mappings

 Adapt address mapping is adapted 
to accommodate partial memory 
shut-down
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PULP2 Energy Efficiency 

(Estimated)
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0.3V

0.4V

0.6V

0.8V

1.0V
1.3V

Leakage dominated region

(near threshold)

Dynamic dominated region

(super threshold)

UP TO 220 GOPS/W IN A TYPICAL LEAKAGE SCENARIO!!!



Introducing FBB...
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Leakage power gowth 

much more than frequency

Almost no impact on dynamic power,

Leakage is negligible

UP TO 1.5X ENERGY EFFICIENCY FOR HIGH WORKLOADS!!!



Pulp v1 28nm FDSOI

Body biasing options

Pulp v2 28nm FDSOI

Standalone system

Pulp v3 28nm FDSOI

High-speed I/O

RISC, DMA v2

Big-Pulp 180nm

Multi-cluster 

(IcySoC)

PULP Family Development

Jan 2014 Jun 2014 Jan 2015

Sir10us 180nm

Processor+ Accelerator

Or10n 180nm

Processor
TBD 65nm

Processor+FPU

Cerebro v4 130nm

SAR ADC

Cerebro + Pulp  

130nm

ADC + Multicore cluster
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0.2 Gops/mW
0.02 Gops @ 22MHz, 0.4V
3.4 Gops @ 850MHz, 1.3V

0.1 Gops/mW
1.0 Gops @ 250MHz, 0.8V



An ULP Computing Ecosystem

What do we need to put together a 

«computing platform»?

HARDWARE IPs
 PROCESSOR

 INTERCONNECT (LOCAL, GLOBAL)

 MEMORY HIERARCHY (CACHES, 

MEMORY CONTROLLERS

 HARDWARE ACCELERATORS

 …

SOFTWARE
 COMPILER/TOOLCHAIN

 PROGRAMMING MODELS

 RUNTIME

 …

VALIDATION
 VIRTUAL PLATFORM

 EMULATION PLATFORM 

(FPGA)

 BENCHMARKS

 REGRESSION TESTS

 …

SILICON
 OPTIMIZATION FLOW

 IMPLEMENTATION FLOW

 VERIFICATION FLOW

 FULL CUSTOM IPS

 …

BUT ALSO…
 SUPPORT FOR DEBUG

 SUPPORT FOR PROFILING

 DESIGN FOR TESTABILITY

 …..

Building an open-

source ecosystem for 

exploring (with silicon!) 

next-generation parallel 

computing platforms



To do what?
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112x112pixel  (300uW)

@60fps 0.76MPx/s    with 1KOPS/pixel we need 0.75Gops!

[Wood13]



log(mW)

1GOPS/mW

28nm

40nm

log(GOPS)

28nm FDSOI

14nm FDSOI

Goal: reduce «bending up» of 

energy curve at low & high perf!

The Grand Challenge:

Energy proportionality

3,200MOPS/W – 30KW

+ Liquid cooling

+ Managing extreme variability
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