
Parallel digital signal processing in a mW power

envelope: how and why?

Davide Rossi

DEI-UNIBO
Multithermand AdG

Multiscale Thermal Management of Computing Systems

IOT or Data Deluge?

In-situ stream processing & fusion + visual intelligence is a must!

- In a few mW power envelope!!

Highly parallel workloads!

[Awaiba+Fraunhofer11]

4mW

CV is the energy bottleneck

How efficient?

3

[RuchIBM11]

1012ops/J

↓

1pJ/op

↓

1GOPS/mW

The challenge of

Energy Proportionality

4

From KOPS (103) to EOPS (1018)!

log(mW)

1GOPS/mW

log(GOPS)

0,003GOPS/mW – 30KW

0,04GOPS/mW

A Very Short Review on CMOS power
and power minimization

Summary of Power Dissipation

Sources

 a – switching activity

 CL – load capacitance

 CCS – short-circuit capacitance

 Vswing – voltage swing

 f – frequency

 DDLeakDCDDswingCSL VIIfVVCCP a~

 IDC – static current

 Ileak – leakage current

powerstaticrate
operation

energy
P

The Traditional Design Philosophy

 Maximum performance is primary goal
 Minimum delay at circuit level

 Architecture implements the required function

with target throughput, latency

 Performance achieved through optimum sizing,

logic mapping, architectural transformations.

 Supplies, thresholds set to achieve maximum

performance, subject to reliability constraints

The New Design Philosophy

 Maximum performance (in terms of propagation delay) is

too power-hungry, and/or not even practically achievable

 Many (if not most) applications either can tolerate larger

latency, or can live with lower than maximum clock-speeds

 Excess performance (as offered by technology) to be used

for energy/power reduction

Trading off speed for power

In energy-constrained world, design is trade-off process

♦ Minimize energy for a given performance requirement

♦ Maximize performance for given energy budget

Delay

Unoptimized

design

DmaxDmin

Energy

Emin

Emax

Exploring the Energy-Delay Space

Pareto-optimal

designs

[Ref: D. Markovic, JSSC’04]

ASCI Springschool 2012 Henk Corporaal (10)

Reducing power @ all design levels

 Algoritmic level

 Compiler level

 Architecture level

 Organization level

 Circuit level

 Silicon level

 Important concepts:

 Lower Vdd and freq. (even if errors occur) /

dynamically adapt Vdd and freq.

 Reduce circuit

 Exploit locality

 Reduce switching activity, glitches, etc.

ASCI Springschool 2012 Henk Corporaal (11)

Algoritmic level

The best indicator for energy is …..

…. the number of cycles

Try alternative algorithms with lower complexity

 E.g. quick-sort, O(n log n) bubble-sort, O (n2)

 … but be aware of the 'constant' : O(n log n) c*(n log n)

Heuristic approach

 Go for a good solution, not the best !!

Biggest gains at this level !!

ASCI Springschool 2012 Henk Corporaal (12)

Compiler level

 Source-to-Source transformations

 loop trafo's to improve locality

 Strength reduction

 E.g. replace Const * A with Add's and Shift's

 Replace Floating point with Fixed point

 Reduce register pressure / number of accesses to register file

 Use software bypassing

 Scenarios: current workloads are highly dynamic

 Determine and predict execution modes

 Group execution modes into scenarios

 Perform special optimizations per scenario

 DFVS: Dynamic Voltage and Frequency Scaling

 More advanced loop optimizations

 Reorder instructions to reduce bit-transistions

ASCI Springschool 2012 Henk Corporaal (13)

Architecture level

Going parallel

Going heterogeneous

 tune your architecture, exploit SFUs (special function

units)

 trade-off between flexibility / programmability / genericity

and efficiency

Add local memories

 prefer scratchpad i.s.o. cache

Cluster FUs and register files (see next slide)

Reduce bit-width

 sub-word parallelism (SIMD)

ASCI Springschool 2012 Henk Corporaal (14)

Organization (micro-arch.) level

Enabling Vdd reduction

 Pipelining

 cheap way of parallelism

 Enabling lower freq. lower Vdd

 Note 1: don't pipeline if you don't need the performance

 Note 2: don't exaggerate (like the 31-stage Pentium 4)

Reduce register traffic

 avoid unnecessary reads and write

 make bypass registers visible

ASCI Springschool 2012 Henk Corporaal (15)

Circuit level

 Clock gating

 Power gating

 Multiple Vdd modes

 Reduce glitches: balancing digital path's

 Exploit Zeros

 Special SRAM cells

 normal SRAM can not scale below Vdd = 0.7 - 0.8 Volt

 Razor method; replay

 Allow errors and add redundancy to architectural invisible
structures

 branch predictor

 caches

 .. and many more ..

ASCI Springschool 2012 Henk Corporaal (16)

Silicon level

 Higher Vt (V_threshold)

 Back Biasing control
 see thesis Maurice Meijer (2011)

 SOI (Silicon on Insulator)
 silicon junction is above an electr. insulator

(silicon dioxide)

 lowers parasitic device capacitance

 Better transistors: Finfet
 multi-gate

 reduce leakage (off-state curent)

 .. and many more

Two Ideas to Remember
…with their caveats

Go Simple+Parallel

18

0

5

10

15

20

25

30

TPT One

App

Two

App

Four

App

Eight

App

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

Large

Med

Small

13mm, 100W, 48MB Cache, 4B Transistors, in 22nm

12 Cores 48 Cores 144 Cores

Single Core

Performance

1

0.5

0.3

0

0.2

0.4

0.6

0.8

1

1.2

L
a

rg
e

M
e

d

S
m

a
ll

R
e

la
ti

v
e

 P
e

rf
o

rm
a

n
c

e

[S. Borkar, Intel, 2006]

Lower Voltage Supply

19

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Total Energy

Leakage Energy

Dynamic Energy

0.55 0.55 0.55 0.55 0.6 0.7 0.8 0.9 1 1.1 1.2

E
n

e
rg

y
/C

y
c
le

(n
J

)

32nm CMOS, 25
o
C

4.7X

Logic Vcc / Memory Vcc (V)

[V. De, Intel, 2013]

…but be careful with Leakage and its variability!

Introducing PULP

NTC Multicore?

1GOPS/mW

10x @10MOPS
Leakage!

High Vdd

90nm LP-CMOS
2010 - With EPFL (Atienza, Burg)

A pJ/OP Parallel ULP

Computing Platform

 pJ/OP is traditionally* the target of ASIC + uCntr

Scalable: [KOPS,TOPS], 32bit architecture

Flexible: OpenMP, OpenVX

Open: Software & HW

22Departement Informationstechnologie und Elektrotechnik

*1.57TOPS/W: Kim et al., “A 1.22TOPS and 1.52mW/MHz Augmented Reality Multi-core Processor

with Neural Network NoC for HMD Applications”, ISSCC 2014

Making PULP

Integrated Systems Laboratory 23

Data

Memory

OpenRISC

Core #1

Instruction

Memory

Start with an simple+efficient processor (~1IPC)

Integrated Systems Laboratory 24

OpenRISC

Core #1

Instruction

Memory

OpenRISC

Core #2

Instruction

Memory

OpenRISC

Core #3

Instruction

Memory

OpenRISC

Core #N

Instruction

Memory

Data

Memory

Data

Memory

Data

Memory

Data

Memory

Parallel processors for performance @ NT

Making PULP

Integrated Systems Laboratory 25

TCDM Logarithmic Interconnect

OpenRISC

Core #1

Instruction

Memory

Mem

Bank

Mem

Bank

OpenRISC

Core #2

Instruction

Memory

Mem

Bank

Mem

Bank

OpenRISC

Core #3

Instruction

Memory

Mem

Bank

Mem

Bank

OpenRISC

Core #N

Instruction

Memory

Mem

Bank

Mem

Bank

Parallel access to shared memoryFlexibility

Making PULP

TCDM Logarithmic Interconnect

Integrated Systems Laboratory 26

OpenRISC

Core #1

Instruction

Memory

Mem

Bank

Mem

Bank

OpenRISC

Core #2

Instruction

Memory

Mem

Bank

Mem

Bank

OpenRISC

Core #3

Instruction

Memory

Mem

Bank

Mem

Bank

OpenRISC

Core #N

Instruction

Memory

Mem

Bank

Mem

Bank

Optional Instruction ExtensionAcceleration

Making PULP

EXU Logarithmic Interconnect

EXU #1 EXU #2 EXU #K

Integrated Systems Laboratory 27

L2

Memory
C

lu
s

te
r

B
u

s

TCDM Logarithmic Interconnect

Cluster

Interface

Bus

Adapter

DMA

Instruction Bus

OpenRISC

Core #1

Instruction

Cache

Mem

Bank

Mem

Bank

OpenRISC

Core #2

Instruction

Cache

Mem

Bank

Mem

Bank

OpenRISC

Core #3

Instruction

Cache

Mem

Bank

Mem

Bank

OpenRISC

Core #N

Instruction

Cache

Mem

Bank

Mem

Bank

Add infrastructure to access off-cluster memory

Making PULP

Integrated Systems Laboratory 28

External

Interface

L3 Memory

High Speed Local Interconnect Bus

L

2

IF

1 2 3 N

Cluster 1

L

2

IF

1 2 3 N

Cluster 2

L

2

IF

1 2 3 N

Cluster M

Multiple clusters (f,Vdd,Vbb) form a PULP system

Making PULP

PULP Cluster

Design choices

 I$ high code locality & simple architecture

 No D$ low locality & high complexity: Bpmm2
D$/Bpmm2

DTCDM<0,4

 Sharing L1 less copies, easy work-balancing, low Tclk overhead in NT

 Multibank smaller energy per access, “almost” multiported

OpenRisc Optimization

 Superpipelining harmful for energy efficiency
 Focused speed optimization on the critical path dominated by MEM

 Low pipeline depth high IPC with simple microarchitecture

(a) LD/ST, (b) MUL (c) BR

50% less energy per operation on average, 5% more area

Logarithmic Interconnect

P1 P2 P3 P4

B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
1

Routing

Tree

Arbitration

Tree

Processors

Memory

Banks

N+1N N+2 N+3 N+4 N+5 N+6 N+7
N+8

World-level bank interleaving «emulates» multiported mem

Ultra-low latency short wires + 1 clock cycle latency

Low latency

programming Interface
 Each command queue is dedicated to

a core of the cluster: arbitration is

made in hardware

 No need to reserve (lock/unlock)

the programming channel

 COREs program DMA through register

mapped on the DEMUX

 The registers belongs to aliases,

no need for the processors to

calculate (per-core) offsets

 A programming sequence requires
1. check a free command queue

2. write address of buffer in TCDM

3. write address of buffer in L2 memory

4. Trigger data transfer

5. Synchronization

EXT ADDR

TCDM ADDR

CMD

TCDM ADDR

EXT ADDR

CMD

BUSYBUSY

Programming Latency: ~10 CLOCK CYCLES!!!

DMA Architecture Overview

33

 CTRL UNIT:
 Arbitration – forwarding

and synchonization of
incoming requests

 TRANSFER UNIT:
 FIFO Buffers tor TX and

RX channnels

 TCDM UNIT:
 Bridge to TCDM protocol –

4 channels (2 RD and 2
WR) 32 bit each

 EXT UNIT:
 Bridge to AXI, 64 bit

Key idea: only channel packets buffered internally – no DMA transfers!

Cluster DMA

Maximum BW

for realistic

applications

BF = 2

Typical config

Sharing fucntional units

(instruction set extensions)

Private FPU
Private FPU

-1
4

0
%

-2
0

0
%

Results normalized to

private FPU cfg

Results normalized to

private FPU cfg

-2
0

0
%

-3
0

0
%

SHARING FPUS

 Floapint point units are area expensive, leakage hungry components

 Typical FPU density in application is no more than 20%

 FPUs typically feature latencies of several clock cycles

Scaling up

 32 bit architecture

 4 GB of memory

 Clusters in Vdd, CLK

domains

 L2 (2D & 3D) ready

 Host VM IF for

Heterogeneous

Computing

17.07.2014 36

0x8000_0000

0xFFFF_FFFF

L3

Clust0
0x4000_0000

Clust1
0x4010_0000

Clust15

Clust0

0x3000_0000

Cluster

Peripherals0x2000_0000

Cluster

Memory0x1000_0000

0x0000_0000

0x4020_0000

0x41F0_0000

0x4200_0000

0x1000_0000

0x1080_0000

0x1F80_0000

0x2000_0000

Clust1

Clust15

0x4000_0000

0x5000_0000
L2

Memory Map:

Programmability: OpenMP

while(1)
{

#pragma omp parallel num_threads(4)
{

#pragma sections
{

#pragma section
{

#pragma omp parallel num_threads(16)
ColorScaleConv();

}
#pragma section
{

#pragma omp parallel num_threads(16)
cvThreshold();

}
#pragma section
{

#pragma omp parallel num_threads(16)
cvMoments();

}
#pragma section
{

#pragma omp parallel num_threads(16)
cvAdd();

}
}

}
}

A.

C

EG

A

EE

B

EF

D

EH

C

EG

A

EE

B

EF

D

EH

B.

C.

D.

void ColorScaleConv()
{

for(i = 0; i < FRAME_SIZE; i++)
{

[ALGORITH]
}

}

#pragma omp for

A powerful abstraction for specifying
structured parallelism

And very suitable for NUMA
(cluster-based) systems

+OpenVX domain specific language

LLVM + OpenCL

Programming: OpenVX

• C-based standard API for vision kernel

 Defines a set of standard kernels

 Enables hardware vendors to implement

accelerated imaging and vision algorithms

• Focus on enabling real-time vision

 On mobile and embedded systems

• Graph execution model

 Each node can be implemented in software or

accelerated hardware

 Data transfer between nodes may be optimized

Open source
sample

implementation?

Hardware vendor
implementations

OpenCV
open

source
library

Other higher-
level

CV libraries

Application

OpenVX
Node

OpenVX
Node

OpenVX
Node

OpenVX
Node

Vanilla OVX Runtime

HOST DEVICE L3 MEM

Kernel 1

Kernel 2

Leverages OpenCL runtime with OVX nodes treated as OCL kernels

Host synchronization between

successive kernels is imposed

Intermediate results stored in L3 mem

each kernel boundary implies two

accesses to all image data (write + read)

Localized Execution

 TCDM is partitioned into 3 buffers (B0, B1, B2)

 Output tile size is 160x120

 Sobel3x3 requires image overlapping (1 pixel for each direction), and so the tile size

is 162x122

 ColorConvert does not require tile overlapping, but must provide a 162x122 result tile

for the next stage → tile size propagation

 Smaller image sub-regions (tiles) totally reside in TCDM

 All kernels are computed at tile level, no more at image level →
intermediate results are also allocated in TCDM

Localized Execution

 TCDM is partitioned into 3 buffers (B0, B1, B2)

 Output tile size is 160x120

 Sobel3x3 requires image overlapping (1 pixel for each direction), and so the tile size

is 162x122

 ColorConvert does not require tile overlapping, but must provide a 162x122 result tile

for the next stage → tile size propagation

 Smaller image sub-regions (tiles) totally reside in TCDM

 All kernels are computed at tile level, no more at image level →
intermediate results are also allocated in TCDM

Localized Execution Results

• Framework prototype
 OpenVX support

 A limited subset of kernel has been implemented

 Polynomial time (i.e. fast) heuristics suitable for just-in-time execution

Cluster PE Efficiency

And what about Technology?

Near threshold FDSOI technology

44

Body bias: Highly effective knob for leakage control!

45Departement Informationstechnologie und Elektrotechnik

Near threshold FDSOI technology

PULP V1

PULP V1: Doing nothing well

(with RBB)

Peripheral

island

Ext island

Instruction Bus

Island
Core 0 : N-1 Islands
 Each processor can be

separately RBBed

depending on the

application workload

 Handled at software level

through nested creation /

destruction of threads
TCDM 0: M-1 Islands
 Each TCDM bank can be separately switched off depending on the application’s memory footprint

 Requires reconfiguration of TCDM interconnect addressing scheme

 Requires re-allocation of stack and program data after each reconfiguration

TCDM

Interconnect

Island

State-Retentive + Low Leakage + Fast transitions

More than 50% of power into memories… this is the next focus area!

0.2mm2

0.4-1.3V

28nm FDSOI

Introducing PULP V2

Board/Application-ready chip

 Implementation of a master

and a slave peripheral

 Standard peripheral (e.g. SPI)

 Integration with FPGAs or

standard low power external

memories

 PULP as multi-core

accelerator for micro-

controller host

 STM32 host core

 PULP muti-core accelerator

 Daisy chain of PULP chips

 Pipeline of parallel processing

units

 Each core perfrorms a stage of

computation and forword

temporary data to another stage

48

Standalone mode is also supported!

Clock generator: FLL

 All-digital clock generation based on a Frequency Lock Loop (FLL)

 From 2GHz down to 15KHz (through clock division)

 Frequency step 10MHz (at lowest division factor)

 Small area 3300µm² (50 times smaller than classic PLL)

 Suited to fine-grain GALS architectures

 Frequency reprograming in less than 180ns

 No frequency overshoot

 15ps jitter

Controller
Target

frequency

DCO

DAC
+
- VCO

Frequency counter

Clock divider

Clk_ref

Clk_out

Division factor

N

S. Lesecq, D. Puschini, E. Beigne, P. Vivet, and Y. Akgul, “Low-Cost and Robust Control of a DFLL for Multi-Processor System-on-Chip,”

IFAC Proceedings Volumes, vol. 18, pp. 1940–1945, 2011

50Departement Informationstechnologie und Elektrotechnik

Near threshold FDSOI technology

PULP V1

PULP V2

Low-leakage vs. Low voltage (0.3V) reactive or proactive?

ULP Latch-based SCM

 Based exclusively on standard cells

 Voltage range identical to the core
 Only static logic

 Layout based on guided P&R
 Close to 100% density

51

64 words x 64 bit

162 x 85 =

13.7k um2

Decoders

Storage

Array +

output mux
Macro Size:

128 x 32 (4 kb)

86μm x 160μm

Input/Output Delay:

0.3ns/0.7ns @ss0.9V125°
2ns/3.3ns @tt0.3V25°(FBB)

SCMs

Comparison to 64x64 SRAM

52

SCM Integration into PULP2

53

16 banks of

128x32 bit SCM

(8 kbyte)

2 banks of

128x32 bit SCM

(2 kbyte)

Instruction

cache per core

8 banks of

512x32 bit SRAM

(16 kbyte)

PULP V2 is taping out this Week, PULP V3 is on the drawing board…

Bank 1 Bank x

Reconfigurable address mapping

 Support for different address

mappings:
 Interleaved: horizontal shutdown and

reduces conflicts in shared segments

 Non-interleaved mapping: private
memory avoids conflicts

 Basic MMU
 Coexistence of both shared and

private memory segments with
different address mappings

 Adapt address mapping is adapted
to accommodate partial memory
shut-down

54

Bank 0

...

MMU

p
ri
v
a

te
s
h

a
re

d

Mapping between logical-

physical addresses

PULP2 Energy Efficiency

(Estimated)

55

0.3V

0.4V

0.6V

0.8V

1.0V
1.3V

Leakage dominated region

(near threshold)

Dynamic dominated region

(super threshold)

UP TO 220 GOPS/W IN A TYPICAL LEAKAGE SCENARIO!!!

Introducing FBB...

56

Leakage power gowth

much more than frequency

Almost no impact on dynamic power,

Leakage is negligible

UP TO 1.5X ENERGY EFFICIENCY FOR HIGH WORKLOADS!!!

Pulp v1 28nm FDSOI

Body biasing options

Pulp v2 28nm FDSOI

Standalone system

Pulp v3 28nm FDSOI

High-speed I/O

RISC, DMA v2

Big-Pulp 180nm

Multi-cluster

(IcySoC)

PULP Family Development

Jan 2014 Jun 2014 Jan 2015

Sir10us 180nm

Processor+ Accelerator

Or10n 180nm

Processor
TBD 65nm

Processor+FPU

Cerebro v4 130nm

SAR ADC

Cerebro + Pulp

130nm

ADC + Multicore cluster

57

0.2 Gops/mW
0.02 Gops @ 22MHz, 0.4V
3.4 Gops @ 850MHz, 1.3V

0.1 Gops/mW
1.0 Gops @ 250MHz, 0.8V

An ULP Computing Ecosystem

What do we need to put together a

«computing platform»?

HARDWARE IPs
 PROCESSOR

 INTERCONNECT (LOCAL, GLOBAL)

 MEMORY HIERARCHY (CACHES,

MEMORY CONTROLLERS

 HARDWARE ACCELERATORS

 …

SOFTWARE
 COMPILER/TOOLCHAIN

 PROGRAMMING MODELS

 RUNTIME

 …

VALIDATION
 VIRTUAL PLATFORM

 EMULATION PLATFORM

(FPGA)

 BENCHMARKS

 REGRESSION TESTS

 …

SILICON
 OPTIMIZATION FLOW

 IMPLEMENTATION FLOW

 VERIFICATION FLOW

 FULL CUSTOM IPS

 …

BUT ALSO…
 SUPPORT FOR DEBUG

 SUPPORT FOR PROFILING

 DESIGN FOR TESTABILITY

 …..

Building an open-

source ecosystem for

exploring (with silicon!)

next-generation parallel

computing platforms

To do what?

59

112x112pixel (300uW)

@60fps 0.76MPx/s with 1KOPS/pixel we need 0.75Gops!

[Wood13]

log(mW)

1GOPS/mW

28nm

40nm

log(GOPS)

28nm FDSOI

14nm FDSOI

Goal: reduce «bending up» of

energy curve at low & high perf!

The Grand Challenge:

Energy proportionality

3,200MOPS/W – 30KW

+ Liquid cooling

+ Managing extreme variability

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

VDD (V)

/
(%
)

PULP1-2 32b, Kops-Tops @ pJ/W

Multithermand AdG

Multiscale Thermal Management of Computing Systems

